Evaluation of bone gain through computerized microtomography images through use of different titanium meshes associated with particulate bovine bone graft and collagen membrane - study in rats

Faria, PEP; Borges, CD; Costa, MS; Taba Jr, M.
1. Universidade de Ribeirão Preto - UNAERP
2. Universidade de São Paulo – FORP/USP

Abstract

Quality and new bone amount is one of the major challenges in today’s implantology. Titanium mesh has been demonstrating possibilities of bone reconstruction for vertical and height bone gain. However, morphology factors are discussed to ensure greater predictability. This study aimed to evaluate if there was quality and new bone volume difference by using titanium meshes with different pore size and thicknesses. Twenty-eight Wistar rats were randomly allocated into four main experimental groups, according to mesh pore size in µm: Group P3000 (Neodent®; n = 7); Group P1750 (Neodent®; n = 7); Group P850: (Bionnovation®; n = 7); Group P15: (Bionnovation®; n = 7). All femurs received bone graft (Bio-Oss Collagen Geistlisch®) below titanium mesh. In vivo computerized microtomography analysis were made at baseline and 30 days after surgery. Histologic analysis comprehends 30 days samples. Results demonstrated no statistic difference between groups in bone volume (p>0.05). Meshes with pore size > 1 mm demonstrated higher mineral bone density, comparing to meshes with pore size < 1 mm (p<0.05). Despite limitations, this study concluded that thickness of titanium mesh did not interfere in bone formation process and that mesh pore size can interfere in bone quality depending on bone graft used.

Methods and Materials

Twenty-eight Wistar rats were randomly allocated into four main experimental groups, according to mesh pore size in µm: Group P3000 (Neodent®; n = 7); Group P1750 (Neodent®; n = 7); Group P850: (Bionnovation®; n = 7); Group P15: (Bionnovation®; n = 7). All femurs received bone graft (Bio-Oss Collagen Geistlisch®) below titanium mesh. In vivo computerized microtomography analysis were made at baseline and 30 days after surgery. Histologic analysis comprehends 30 days samples. Results demonstrated no statistic difference between groups in bone volume (p>0.05). Meshes with pore size > 1 mm demonstrated higher mineral bone density, comparing to meshes with pore size < 1 mm (p<0.05). Despite limitations, this study concluded that thickness of titanium mesh did not interfere in bone formation process and that mesh pore size can interfere in bone quality depending on bone graft used.

Results

No statistic difference between groups in bone volume (p>0.05). Meshes of group 1 demonstrated higher mineral bone density, when comparing to group 2 meshes (p<0.05), regardless collagen membrane. Meshes with pore size > 1 mm demonstrated higher mineral bone density, comparing to meshes with pore size < 1 mm (p<0.05).

Conclusion

Despite limitations, this study concluded that thickness of titanium mesh did not interfere in bone formation process and that mesh pore size can interfere in bone quality depending on bone graft used. Additional use of collagen membrane on titanium mesh, associated with xenogen bone graft, did not determine formation of superior quality new bone.

References